旅行商問題演算法
❶ 一段關於旅行商問題的代碼,可否解釋下演算法思想,及 swap 函數的作用
=151456456847
❷ 想用動態規劃演算法解決旅行商(TSP)問題,麻煩指點下方法和思路,詳細點,謝謝1
http://hi..com/__%D2%E5__/blog/item/d6326f1fcbdb4eff1ad576d8.html
http://liouwei20051000285.blog.163.com/blog/static/25236742009112242726527/
以上都是動態規劃解決TSP問題的,但是個人覺得不是太好,建議你去了解一下遺傳演算法,很容易懂,網上有很詳細的講解。希望你學到知識
❸ java人工蜂群演算法求解TSP問題
一、人工蜂群演算法的介紹
人工蜂群演算法(Artificial Bee Colony, ABC)是由Karaboga於2005年提出的一種新穎的基於群智能的全局優化演算法,其直觀背景來源於蜂群的采蜜行為,蜜蜂根據各自的分工進行不同的活動,並實現蜂群信息的共享和交流,從而找到問題的最優解。人工蜂群演算法屬於群智能演算法的一種。
二、人工蜂群演算法的原理
1、原理
標準的ABC演算法通過模擬實際蜜蜂的采蜜機制將人工蜂群分為3類: 采蜜蜂、觀察蜂和偵察蜂。整個蜂群的目標是尋找花蜜量最大的蜜源。在標準的ABC演算法中,采蜜蜂利用先前的蜜源信息尋找新的蜜源並與觀察蜂分享蜜源信息;觀察蜂在蜂房中等待並依據采蜜蜂分享的信息尋找新的蜜源;偵查蜂的任務是尋找一個新的有價值的蜜源,它們在蜂房附近隨機地尋找蜜源。
假設問題的解空間是。
代碼:
[cpp]view plain
#include<iostream>
#include<time.h>
#include<stdlib.h>
#include<cmath>
#include<fstream>
#include<iomanip>
usingnamespacestd;
constintNP=40;//種群的規模,采蜜蜂+觀察蜂
constintFoodNumber=NP/2;//食物的數量,為采蜜蜂的數量
constintlimit=20;//限度,超過這個限度沒有更新采蜜蜂變成偵查蜂
constintmaxCycle=10000;//停止條件
/*****函數的特定參數*****/
constintD=2;//函數的參數個數
constdoublelb=-100;//函數的下界
constdoubleub=100;//函數的上界
doubleresult[maxCycle]={0};
/*****種群的定義****/
structBeeGroup
{
doublecode[D];//函數的維數
doubletrueFit;//記錄真實的最小值
doublefitness;
doublerfitness;//相對適應值比例
inttrail;//表示實驗的次數,用於與limit作比較
}Bee[FoodNumber];
BeeGroupNectarSource[FoodNumber];//蜜源,注意:一切的修改都是針對蜜源而言的
BeeGroupEmployedBee[FoodNumber];//采蜜蜂
BeeGroupOnLooker[FoodNumber];//觀察蜂
BeeGroupBestSource;//記錄最好蜜源
/*****函數的聲明*****/
doublerandom(double,double);//產生區間上的隨機數
voidinitilize();//初始化參數
doublecalculationTruefit(BeeGroup);//計算真實的函數值
doublecalculationFitness(double);//計算適應值
voidCalculateProbabilities();//計算輪盤賭的概率
voidevalueSource();//評價蜜源
voidsendEmployedBees();
voidsendOnlookerBees();
voidsendScoutBees();
voidMemorizeBestSource();
/*******主函數*******/
intmain()
{
ofstreamoutput;
output.open("dataABC.txt");
srand((unsigned)time(NULL));
initilize();//初始化
MemorizeBestSource();//保存最好的蜜源
//主要的循環
intgen=0;
while(gen<maxCycle)
{
sendEmployedBees();
CalculateProbabilities();
sendOnlookerBees();
MemorizeBestSource();
sendScoutBees();
MemorizeBestSource();
output<<setprecision(30)<<BestSource.trueFit<<endl;
gen++;
}
output.close();
cout<<"運行結束!!"<<endl;
return0;
}
/*****函數的實現****/
doublerandom(doublestart,doubleend)//隨機產生區間內的隨機數
{
returnstart+(end-start)*rand()/(RAND_MAX+1.0);
}
voidinitilize()//初始化參數
{
inti,j;
for(i=0;i<FoodNumber;i++)
{
for(j=0;j<D;j++)
{
NectarSource[i].code[j]=random(lb,ub);
EmployedBee[i].code[j]=NectarSource[i].code[j];
OnLooker[i].code[j]=NectarSource[i].code[j];
BestSource.code[j]=NectarSource[0].code[j];
}
/****蜜源的初始化*****/
NectarSource[i].trueFit=calculationTruefit(NectarSource[i]);
NectarSource[i].fitness=calculationFitness(NectarSource[i].trueFit);
NectarSource[i].rfitness=0;
NectarSource[i].trail=0;
/****采蜜蜂的初始化*****/
EmployedBee[i].trueFit=NectarSource[i].trueFit;
EmployedBee[i].fitness=NectarSource[i].fitness;
EmployedBee[i].rfitness=NectarSource[i].rfitness;
EmployedBee[i].trail=NectarSource[i].trail;
/****觀察蜂的初始化****/
OnLooker[i].trueFit=NectarSource[i].trueFit;
OnLooker[i].fitness=NectarSource[i].fitness;
OnLooker[i].rfitness=NectarSource[i].rfitness;
OnLooker[i].trail=NectarSource[i].trail;
}
/*****最優蜜源的初始化*****/
BestSource.trueFit=NectarSource[0].trueFit;
BestSource.fitness=NectarSource[0].fitness;
BestSource.rfitness=NectarSource[0].rfitness;
BestSource.trail=NectarSource[0].trail;
}
doublecalculationTruefit(BeeGroupbee)//計算真實的函數值
{
doubletruefit=0;
/******測試函數1******/
truefit=0.5+(sin(sqrt(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))*sin(sqrt(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))-0.5)
/((1+0.001*(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))*(1+0.001*(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1])));
returntruefit;
}
doublecalculationFitness(doubletruefit)//計算適應值
{
doublefitnessResult=0;
if(truefit>=0)
{
fitnessResult=1/(truefit+1);
}else
{
fitnessResult=1+abs(truefit);
}
returnfitnessResult;
}
voidsendEmployedBees()//修改采蜜蜂的函數
{
inti,j,k;
intparam2change;//需要改變的維數
doubleRij;//[-1,1]之間的隨機數
for(i=0;i<FoodNumber;i++)
{
param2change=(int)random(0,D);//隨機選取需要改變的維數
/******選取不等於i的k********/
while(1)
{
k=(int)random(0,FoodNumber);
if(k!=i)
{
break;
}
}
for(j=0;j<D;j++)
{
EmployedBee[i].code[j]=NectarSource[i].code[j];
}
/*******采蜜蜂去更新信息*******/
Rij=random(-1,1);
EmployedBee[i].code[param2change]=NectarSource[i].code[param2change]+Rij*(NectarSource[i].code[param2change]-NectarSource[k].code[param2change]);
/*******判斷是否越界********/
if(EmployedBee[i].code[param2change]>ub)
{
EmployedBee[i].code[param2change]=ub;
}
if(EmployedBee[i].code[param2change]<lb)
{
EmployedBee[i].code[param2change]=lb;
}
EmployedBee[i].trueFit=calculationTruefit(EmployedBee[i]);
EmployedBee[i].fitness=calculationFitness(EmployedBee[i].trueFit);
/******貪婪選擇策略*******/
if(EmployedBee[i].trueFit<NectarSource[i].trueFit)
{
for(j=0;j<D;j++)
{
NectarSource[i].code[j]=EmployedBee[i].code[j];
}
NectarSource[i].trail=0;
NectarSource[i].trueFit=EmployedBee[i].trueFit;
NectarSource[i].fitness=EmployedBee[i].fitness;
}else
{
NectarSource[i].trail++;
}
}
}
voidCalculateProbabilities()//計算輪盤賭的選擇概率
{
inti;
doublemaxfit;
maxfit=NectarSource[0].fitness;
for(i=1;i<FoodNumber;i++)
{
if(NectarSource[i].fitness>maxfit)
maxfit=NectarSource[i].fitness;
}
for(i=0;i<FoodNumber;i++)
{
NectarSource[i].rfitness=(0.9*(NectarSource[i].fitness/maxfit))+0.1;
}
}
voidsendOnlookerBees()//采蜜蜂與觀察蜂交流信息,觀察蜂更改信息
{
inti,j,t,k;
doubleR_choosed;//被選中的概率
intparam2change;//需要被改變的維數
doubleRij;//[-1,1]之間的隨機數
i=0;
t=0;
while(t<FoodNumber)
{
R_choosed=random(0,1);
if(R_choosed<NectarSource[i].rfitness)//根據被選擇的概率選擇
{
t++;
param2change=(int)random(0,D);
/******選取不等於i的k********/
while(1)
{
k=(int)random(0,FoodNumber);
if(k!=i)
{
break;
}
}
for(j=0;j<D;j++)
{
OnLooker[i].code[j]=NectarSource[i].code[j];
}
/****更新******/
Rij=random(-1,1);
OnLooker[i].code[param2change]=NectarSource[i].code[param2change]+Rij*(NectarSource[i].code[param2change]-NectarSource[k].code[param2change]);
/*******判斷是否越界*******/
if(OnLooker[i].code[param2change]<lb)
{
OnLooker[i].code[param2change]=lb;
}
if(OnLooker[i].code[param2change]>ub)
{
OnLooker[i].code[param2change]=ub;
}
OnLooker[i].trueFit=calculationTruefit(OnLooker[i]);
OnLooker[i].fitness=calculationFitness(OnLooker[i].trueFit);
/****貪婪選擇策略******/
if(OnLooker[i].trueFit<NectarSource[i].trueFit)
{
for(j=0;j<D;j++)
{
NectarSource[i].code[j]=OnLooker[i].code[j];
}
NectarSource[i].trail=0;
NectarSource[i].trueFit=OnLooker[i].trueFit;
NectarSource[i].fitness=OnLooker[i].fitness;
}else
{
NectarSource[i].trail++;
}
}
i++;
if(i==FoodNumber)
{
i=0;
}
}
}
❹ 旅行商問題在演算法上與什麼問題相似
額,TSP問題可以用很多智能演算法,我再給你找找相關文獻吧,作為回報 迄今為止,這類問題中沒有一個找到有效演算法。 傾向於接受NP完全問題(NP-Complet或NPC)和NP難題(NP-Hard或NPH)不存在有效演算法這一猜想,認為這類問題的大型實例不能用精確算
❺ 對於大規模TSP問題,為什麼遍歷演算法不可行而貪心演算法可行
TSP屬於NPC問題,一般只能靠近似演算法求出近似解,問題規模小的時候,可以內直接窮舉問題空間,得出容最優解,不過問題規模一大就不行了,問題空間是指數暴漲的,這時候只能退而求其次,求近似最優解,而對應的近似演算法中會大量使用貪心策略,所以其實不是可不可行的問題,貪心犧牲了 解的精度(求得的不一定是最優解),但換來了時間上可觀的節約(直接降到多項式)。
❻ C++演算法,動態規劃法實現TSP問題
c++listmatrixiteratoriostream演算法
[cpp] view plainprint?
#include
#include
using namespace std ;
typedef list<</SPAN>int> LISTINT;
LISTINT listAnother;
LISTINT list_result;
int d[4][4]={{-1,3,6,7},{2,-1,8,6},{7,3,-1,5,},{7,3,7,-1}}; //路徑權值
int matrix_length=4;
int getPath(int n,LISTINT list_org)
{
LISTINT::iterator i;
int minValue;
if(n==1)
{
i=list_org.begin();
minValue= d[*i-1][0];
if(list_org.size()==matrix_length-1)
{
list_result=list_org;
}
}
else
{
int temp;
i=list_org.begin();
temp=*i;
list_org.erase(i);
i=list_org.begin();
minValue=d[temp-1][*(i)-1]+getPath(n-1,list_org);
if(list_org.size()==matrix_length-1)
{
list_result=list_org;
}
for(int j=2;j
{
i=list_org.begin();
for(int k=1;k
{
i++;
}
int tempvalue=*i;
list_org.erase(i);
list_org.push_front(tempvalue);
i=list_org.begin();
tempvalue=d[temp-1][*(i)-1]+getPath(n-1,list_org);
if(tempvalue
{
if(list_org.size()==matrix_length-1)
{
list_result=list_org;
}
minValue=tempvalue;
}
}
}
return minValue;
}
int main(int argc, char* argv[])
{
LISTINT list_org;
LISTINT::iterator h;
list_org.push_front(4);
list_org.push_front(3);
list_org.push_front(2);
list_org.push_front(1);
cout<<"旅行商問題動態規劃演算法"<<endl;
cout<<"路線長度的矩陣表示如下 (-1表示無限大)"<<endl;
for(int j=0;j
cout<<endl;
for(int k=0;k
cout<<" "<<d[j][k];
}
}
cout<<endl;
cout<<"計算結果:"<<getPath(4,list_org)<<endl;
list_result.push_front(1);
list_result.push_back(1);
cout<<"要走的路徑:---->:";
for (h = list_result.begin(); h != list_result.end(); ++h)
cout << *h << " ";
cout << endl;
int i;
cin>>i;
return 0;
}
❼ 假設哈密頓問題是NPC,證明:TSP(旅行商問題)屬於NP-hard問題(現代優化計算方法 邢文旬主編 P50第11題)
首先HC是一個npc問題且是一個搜索問題,假設使用貪心策略的演算法A(·)可解HC得到一條哈密頓迴路。
再利用無向圖G構造tsp的圖G',圖G中存在的邊權值設為1,圖G中不存在的邊權值設為X(X>1的整數)。
這樣得到的一個TSP問題可使用演算法A(·)來解。
圖靈規約條件:(1)問題1,問題2都是搜索問題;
(2)求解問題1的演算法A(·)可求解問題2;
(3)演算法A(問題1)時間復雜度是多項式時間,則演算法A(問題2)也是多項式時間;
所以HC可以圖靈規約到這樣一個TSP問題實例。
又因為HC是NPC類問題,可以圖靈規約到TSP,所以TSP是NP-hard問題